Linux web-conference.aiou.edu.pk 5.4.0-204-generic #224-Ubuntu SMP Thu Dec 5 13:38:28 UTC 2024 x86_64
Apache/2.4.41 (Ubuntu)
: 172.16.50.247 | : 3.138.178.162
Cant Read [ /etc/named.conf ]
7.4.3-4ubuntu2.28
appadmin
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
BLACK DEFEND!
README
+ Create Folder
+ Create File
/
usr /
lib /
python3 /
dist-packages /
automat /
[ HOME SHELL ]
Name
Size
Permission
Action
__pycache__
[ DIR ]
drwxr-xr-x
_test
[ DIR ]
drwxr-xr-x
__init__.py
169
B
-rw-r--r--
_core.py
4.71
KB
-rw-r--r--
_discover.py
4.26
KB
-rw-r--r--
_introspection.py
1.24
KB
-rw-r--r--
_methodical.py
15.56
KB
-rw-r--r--
_visualize.py
6.19
KB
-rw-r--r--
Delete
Unzip
Zip
${this.title}
Close
Code Editor : _methodical.py
# -*- test-case-name: automat._test.test_methodical -*- import collections from functools import wraps from itertools import count try: # Python 3 from inspect import getfullargspec as getArgsSpec except ImportError: # Python 2 from inspect import getargspec as getArgsSpec import attr import six from ._core import Transitioner, Automaton from ._introspection import preserveName ArgSpec = collections.namedtuple('ArgSpec', ['args', 'varargs', 'varkw', 'defaults', 'kwonlyargs', 'kwonlydefaults', 'annotations']) def _getArgSpec(func): """ Normalize inspect.ArgSpec across python versions and convert mutable attributes to immutable types. :param Callable func: A function. :return: The function's ArgSpec. :rtype: ArgSpec """ spec = getArgsSpec(func) return ArgSpec( args=tuple(spec.args), varargs=spec.varargs, varkw=spec.varkw if six.PY3 else spec.keywords, defaults=spec.defaults if spec.defaults else (), kwonlyargs=tuple(spec.kwonlyargs) if six.PY3 else (), kwonlydefaults=( tuple(spec.kwonlydefaults.items()) if spec.kwonlydefaults else () ) if six.PY3 else (), annotations=tuple(spec.annotations.items()) if six.PY3 else (), ) def _getArgNames(spec): """ Get the name of all arguments defined in a function signature. The name of * and ** arguments is normalized to "*args" and "**kwargs". :param ArgSpec spec: A function to interrogate for a signature. :return: The set of all argument names in `func`s signature. :rtype: Set[str] """ return set( spec.args + spec.kwonlyargs + (('*args',) if spec.varargs else ()) + (('**kwargs',) if spec.varkw else ()) + spec.annotations ) def _keywords_only(f): """ Decorate a function so all its arguments must be passed by keyword. A useful utility for decorators that take arguments so that they don't accidentally get passed the thing they're decorating as their first argument. Only works for methods right now. """ @wraps(f) def g(self, **kw): return f(self, **kw) return g @attr.s(frozen=True) class MethodicalState(object): """ A state for a L{MethodicalMachine}. """ machine = attr.ib(repr=False) method = attr.ib() serialized = attr.ib(repr=False) def upon(self, input, enter, outputs, collector=list): """ Declare a state transition within the :class:`automat.MethodicalMachine` associated with this :class:`automat.MethodicalState`: upon the receipt of the `input`, enter the `state`, emitting each output in `outputs`. :param MethodicalInput input: The input triggering a state transition. :param MethodicalState enter: The resulting state. :param Iterable[MethodicalOutput] outputs: The outputs to be triggered as a result of the declared state transition. :param Callable collector: The function to be used when collecting output return values. :raises TypeError: if any of the `outputs` signatures do not match the `inputs` signature. :raises ValueError: if the state transition from `self` via `input` has already been defined. """ inputArgs = _getArgNames(input.argSpec) for output in outputs: outputArgs = _getArgNames(output.argSpec) if not outputArgs.issubset(inputArgs): raise TypeError( "method {input} signature {inputSignature} " "does not match output {output} " "signature {outputSignature}".format( input=input.method.__name__, output=output.method.__name__, inputSignature=getArgsSpec(input.method), outputSignature=getArgsSpec(output.method), )) self.machine._oneTransition(self, input, enter, outputs, collector) def _name(self): return self.method.__name__ def _transitionerFromInstance(oself, symbol, automaton): """ Get a L{Transitioner} """ transitioner = getattr(oself, symbol, None) if transitioner is None: transitioner = Transitioner( automaton, automaton.initialState, ) setattr(oself, symbol, transitioner) return transitioner def _empty(): pass def _docstring(): """docstring""" def assertNoCode(inst, attribute, f): # The function body must be empty, i.e. "pass" or "return None", which # both yield the same bytecode: LOAD_CONST (None), RETURN_VALUE. We also # accept functions with only a docstring, which yields slightly different # bytecode, because the "None" is put in a different constant slot. # Unfortunately, this does not catch function bodies that return a # constant value, e.g. "return 1", because their code is identical to a # "return None". They differ in the contents of their constant table, but # checking that would require us to parse the bytecode, find the index # being returned, then making sure the table has a None at that index. if f.__code__.co_code not in (_empty.__code__.co_code, _docstring.__code__.co_code): raise ValueError("function body must be empty") def _filterArgs(args, kwargs, inputSpec, outputSpec): """ Filter out arguments that were passed to input that output won't accept. :param tuple args: The *args that input received. :param dict kwargs: The **kwargs that input received. :param ArgSpec inputSpec: The input's arg spec. :param ArgSpec outputSpec: The output's arg spec. :return: The args and kwargs that output will accept. :rtype: Tuple[tuple, dict] """ named_args = tuple(zip(inputSpec.args[1:], args)) if outputSpec.varargs: # Only return all args if the output accepts *args. return_args = args else: # Filter out arguments that don't appear # in the output's method signature. return_args = [v for n, v in named_args if n in outputSpec.args] # Get any of input's default arguments that were not passed. passed_arg_names = tuple(kwargs) for name, value in named_args: passed_arg_names += (name, value) defaults = zip(inputSpec.args[::-1], inputSpec.defaults[::-1]) full_kwargs = {n: v for n, v in defaults if n not in passed_arg_names} full_kwargs.update(kwargs) if outputSpec.varkw: # Only pass all kwargs if the output method accepts **kwargs. return_kwargs = full_kwargs else: # Filter out names that the output method does not accept. all_accepted_names = outputSpec.args[1:] + outputSpec.kwonlyargs return_kwargs = {n: v for n, v in full_kwargs.items() if n in all_accepted_names} return return_args, return_kwargs @attr.s(cmp=False, hash=False) class MethodicalInput(object): """ An input for a L{MethodicalMachine}. """ automaton = attr.ib(repr=False) method = attr.ib(validator=assertNoCode) symbol = attr.ib(repr=False) collectors = attr.ib(default=attr.Factory(dict), repr=False) argSpec = attr.ib(init=False, repr=False) @argSpec.default def _buildArgSpec(self): return _getArgSpec(self.method) def __get__(self, oself, type=None): """ Return a function that takes no arguments and returns values returned by output functions produced by the given L{MethodicalInput} in C{oself}'s current state. """ transitioner = _transitionerFromInstance(oself, self.symbol, self.automaton) @preserveName(self.method) @wraps(self.method) def doInput(*args, **kwargs): self.method(oself, *args, **kwargs) previousState = transitioner._state (outputs, outTracer) = transitioner.transition(self) collector = self.collectors[previousState] values = [] for output in outputs: if outTracer: outTracer(output._name()) a, k = _filterArgs(args, kwargs, self.argSpec, output.argSpec) value = output(oself, *a, **k) values.append(value) return collector(values) return doInput def _name(self): return self.method.__name__ @attr.s(frozen=True) class MethodicalOutput(object): """ An output for a L{MethodicalMachine}. """ machine = attr.ib(repr=False) method = attr.ib() argSpec = attr.ib(init=False, repr=False) @argSpec.default def _buildArgSpec(self): return _getArgSpec(self.method) def __get__(self, oself, type=None): """ Outputs are private, so raise an exception when we attempt to get one. """ raise AttributeError( "{cls}.{method} is a state-machine output method; " "to produce this output, call an input method instead.".format( cls=type.__name__, method=self.method.__name__ ) ) def __call__(self, oself, *args, **kwargs): """ Call the underlying method. """ return self.method(oself, *args, **kwargs) def _name(self): return self.method.__name__ @attr.s(cmp=False, hash=False) class MethodicalTracer(object): automaton = attr.ib(repr=False) symbol = attr.ib(repr=False) def __get__(self, oself, type=None): transitioner = _transitionerFromInstance(oself, self.symbol, self.automaton) def setTrace(tracer): transitioner.setTrace(tracer) return setTrace counter = count() def gensym(): """ Create a unique Python identifier. """ return "_symbol_" + str(next(counter)) class MethodicalMachine(object): """ A :class:`MethodicalMachine` is an interface to an `Automaton` that uses methods on a class. """ def __init__(self): self._automaton = Automaton() self._reducers = {} self._symbol = gensym() def __get__(self, oself, type=None): """ L{MethodicalMachine} is an implementation detail for setting up class-level state; applications should never need to access it on an instance. """ if oself is not None: raise AttributeError( "MethodicalMachine is an implementation detail.") return self @_keywords_only def state(self, initial=False, terminal=False, serialized=None): """ Declare a state, possibly an initial state or a terminal state. This is a decorator for methods, but it will modify the method so as not to be callable any more. :param bool initial: is this state the initial state? Only one state on this :class:`automat.MethodicalMachine` may be an initial state; more than one is an error. :param bool terminal: Is this state a terminal state? i.e. a state that the machine can end up in? (This is purely informational at this point.) :param Hashable serialized: a serializable value to be used to represent this state to external systems. This value should be hashable; :py:func:`unicode` is a good type to use. """ def decorator(stateMethod): state = MethodicalState(machine=self, method=stateMethod, serialized=serialized) if initial: self._automaton.initialState = state return state return decorator @_keywords_only def input(self): """ Declare an input. This is a decorator for methods. """ def decorator(inputMethod): return MethodicalInput(automaton=self._automaton, method=inputMethod, symbol=self._symbol) return decorator @_keywords_only def output(self): """ Declare an output. This is a decorator for methods. This method will be called when the state machine transitions to this state as specified in the decorated `output` method. """ def decorator(outputMethod): return MethodicalOutput(machine=self, method=outputMethod) return decorator def _oneTransition(self, startState, inputToken, endState, outputTokens, collector): """ See L{MethodicalState.upon}. """ # FIXME: tests for all of this (some of it is wrong) # if not isinstance(startState, MethodicalState): # raise NotImplementedError("start state {} isn't a state" # .format(startState)) # if not isinstance(inputToken, MethodicalInput): # raise NotImplementedError("start state {} isn't an input" # .format(inputToken)) # if not isinstance(endState, MethodicalState): # raise NotImplementedError("end state {} isn't a state" # .format(startState)) # for output in outputTokens: # if not isinstance(endState, MethodicalState): # raise NotImplementedError("output state {} isn't a state" # .format(endState)) self._automaton.addTransition(startState, inputToken, endState, tuple(outputTokens)) inputToken.collectors[startState] = collector @_keywords_only def serializer(self): """ """ def decorator(decoratee): @wraps(decoratee) def serialize(oself): transitioner = _transitionerFromInstance(oself, self._symbol, self._automaton) return decoratee(oself, transitioner._state.serialized) return serialize return decorator @_keywords_only def unserializer(self): """ """ def decorator(decoratee): @wraps(decoratee) def unserialize(oself, *args, **kwargs): state = decoratee(oself, *args, **kwargs) mapping = {} for eachState in self._automaton.states(): mapping[eachState.serialized] = eachState transitioner = _transitionerFromInstance( oself, self._symbol, self._automaton) transitioner._state = mapping[state] return None # it's on purpose return unserialize return decorator @property def _setTrace(self): return MethodicalTracer(self._automaton, self._symbol) def asDigraph(self): """ Generate a L{graphviz.Digraph} that represents this machine's states and transitions. @return: L{graphviz.Digraph} object; for more information, please see the documentation for U{graphviz<https://graphviz.readthedocs.io/>} """ from ._visualize import makeDigraph return makeDigraph( self._automaton, stateAsString=lambda state: state.method.__name__, inputAsString=lambda input: input.method.__name__, outputAsString=lambda output: output.method.__name__, )
Close